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ABSTRACT

This report is a comparative study of the spatial filters pro-
posed for detecting stationary or slow-moving point targets. The
filters are characterized by their probability of detection against a)
the probability of false alarm, b) the strength or contrast of the
target for a given false-alarm rate or c) the noise for a given false-
alarm rate and a given strength or contrast.

RESUME

Ce rapport consiste en une Stude comparative des difffrents
filtres spatiaux qui sont proposes pour la detection de cibles ponc-

tuelles stationnaires ou quasi stationnaires. Les filtres ont 6t6
caractfrisfs par leur probabilitf de dftection en fonction: a) de la
probabilitg d'une fausse alarme, b) de l'intensitf ou du contraste de
la cible pour une probabilitf de fausse alarme donnfe ou c) du bruit
pour une probabilitg de fausse alarme et une intensitS ou un contraste
donns.
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1.0 INTRODUCTION

Spatial filters are widely used for target-detection applica-

tions. Hence, during the past few years we have developed and tested a

certain number of nonlinear spatial filters generically referred to as

double-gated filters. Several other nonlinear and/or linear spatial

filters have been developed for the same purpose by Defence Research

Establishment Valcartier (DREV) or by private firms under contract from

DREV (Refs. 1-2).

Given the large number of spatial filters that are discussed in

the scientific literature, there is undoubtedly a need for some sort of

characterization procedure that would allow one to assess the ability

of a particular spatial filter to detect targets. We will limit our-

selves here to the detection of point targets in cluttered IR back-

grounds. This shall be construed as meaning that the characterization

procedure to be developed is not applicable to the detection of

extended targets and that the results obtained for point targets cannot

be generalized for extended or spread targets. We indeed feel that

point targets and extended targets should be treated separately. It is

far from obvious that the same spatial filter can be equally good both

for point targets and for extended targets. Most spatial filters

designed to detect a point target are based on the principle that such

a target is nothing but an intensity surge, and as such is character-

ized by high spatial-frequency contents as opposed to the background,

which mainly consists of low spatial frequencies. The rationale is

that by filtering out the low-frequency components of an image, one

should enhance the target-to-clutter ratio and make the target easier

to isolate from the background. An extended target, however, contains

both high spatial frequencies (the edges of the target) and low spatial

frequencies, i.e. the interior of the target. In consequence, by

filtering out the low frequencies, one ends up with only the edges or

the outline of the extended target, and the processing needed to iso-
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late it is radically different from that needed to isolate a point

target (a simple threshold) and is not amenable to the same characteri-

zation procedure.

In this report, we define a point target as a target whose image

is fully contained in a single picture element, and an extended target

as one whose image overlaps several picture elements or pixels. How-

ever, one should be aware that as the target moves, it is bound to be

seen by more than one pixel, e.g. when it crosses the boundary between

two pixels. This is because a point target has a finite extent and is

not a point in the geometrical sense. Here we neglect this aspect of

14 the problem. In other words, we assume that the target is always

sitting on a single pixel and that if it moves, it does so in steps of

an integral number of pixels. This is not really a restriction as far

*as the characterization procedure is concerned. Assume that the point

target in question is square and that it fully fills a pixel in size.

Then, as this target moves, part of it will necessarily be seen by more

than one pixel. In fact, it will be seen by two pixels (intensity of

the target split among two pixels) if it moves horizontally or verti-

cally, and by four pixels if it moves at a certain angle. This means

that the proportion of the target seen by a given pixel will vary from

1 to 0.25 as it moves. This also means, assuming we use a single-

intensity threshold to detect the target, that it might not be detecta-

ble in some portions of its trajectory even though the target maneuvers

against a uniform background.

In Chapter 2.0 we fully describe the proposed characterization

methodology. For instance, we explain what we mean by a probability of

a false alarm or a probability of a true alarm and how we proceed to

calculate them. The next chapter briefly describes the spatial filters

proposed to detect slow or stationary targets. Finally, Chapter 4.0

presents and discusses the characterization results obtained.
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This work was performed at DREV between April and December 1985

under PCN 33J05, Signal Processing - SBIRS.

2.0 CHARACTERIZATION METHODOLOGY

2.1 Baseline Surveillance System

Figure 1 illustrates the method of operation of a baseline sur-

veillance system consisting of (1) an IR sensor, (2) a spatial filter,

and (3) a threshold device. The image gathered by the IR sensor is

first filtered using, as in the example here, the following 3 x 3,

linear high-pass spatial filter:

+0.25 -0.50 +0.25

-0.50 +1.00 -0.50 [1]

+0.25 -0.50 +0.25

The image is then thresholded according to a single intensity thresh-

4. old. The resulting image consists of a number of scattered white spots

that mark the location of those pixels in the original image whose

intensity exceeds the threshold. We will refer here to the threshold

exceedances as alarms and distinguish between true alarms, i.e. those

threshold exceedances that correspond to real targets, and false

alarms, i.e. those that arise from background clutter. We will use the

word "detections" to designate the true alarms.

The above-mentioned filtering and thresholding operations

constitute only the preliminary phase, what I.W. Kay (Ref. 3) calls the

detection phase, of the decision-making process aimed at discriminating

between targets and backgoounds within the sensor's field of search.

Tracking algorithms, which distinguish between the resulting true and

false alarms by means of their supposedly different characteristics

observed over time, make the final decision whether or not to declare

that a target is present. This second phase is referred to as the

16
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FIGURE I - This figure illustrates the method of operation of a
baseline surveillance system consisting of: (1) an IR

sensor, (2) a high-pass spatial filter, and (3) a threshold
device. The sequence on the left-hand side depicts the
output of the system in the absence of targets, whereas the
sequence on the right-hand side shows what the output might

look like when targets are present. The original image was
collected by the Netherlands IRSCAN system in the 8-12 vim
band. This IR sensor consists of a vertical array of 120

cadmium mercury telluride detectors. They produce a com-
plete image of 220 x 120 pixels over the horizontal scanning

of a scene.

I • . - . .- ,.

<%]]

e"%



UNCLASSIFIED

5

declaration phase in Ref. 3. The scope of this report is restricted to

the detection phase and its primary objective is to formulate a method-

ology for assessing the ability of a particular linear or nonlinear

spatial filter to detect point targets.

The detection phase is of the utmost importance because it

should discard as much background as possible without throwing away a

valid target. The critical nature of this phase is an accepted fact as

noted in image-processing literature, where the term "segmentation" is

used to designate it. On the one hand, the detection phase sets a

ceiling on the probability of target detection, for a target mistakenly

rejected at this step is lost for good. On the other hand, as pointed

out in Ref. 3, tracking algorithms used in the subsequent declaration

phase will work only if, initially, the expected number of false alarms

is below a certain critical value. Moreover, the effectiveness of a

tracking algorithm is extremely sensitive to errors unless the a priori

false-alarm probability can be reduced by the signal-processing

techniques peculiar to the detection phase (Ref. 3).

It is common for a surveillance system to be used under condi-

tions where most of the time there are no targets at all within the

sensor's field of search. Indeed, we expect a surveillance system to

give the alert only in rare and exceptional occasions. This means that

the vast majority of the alarms generated by the detection phase are

false ones. On the other hand, as mentioned in the preceding para-

graph, the results of the declaration phase depend heavily on the

number of false alarms generated by the detection phase. Thus, it is

important to set a limit on the number of false alarms. This is

equivalent to prescribing a constant false alarm rate (CFAR). The

number of alarms generated by the baseline surveillance system of

Fig. I can be easily controlled by varying the level of the threshold.

So, independent of the particular spatial filter used, it is always

possible to select the threshold in such a way that the number of

alarms will equal a preset number. Under these conditions, we

%%

% N
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obviously cannot characterize a spatial filter by its ability to reduce

the dispersion of the gray levels of the original image, as is some-

times done. Instead, given the CFAR condition, the problem of charac-

terizing a particular spatial filter can be stated as follows. Among

all the possible spatial filters used for detecting the presence of a

point target with a given false-alarm probability, find the filter for

which the probability of detection is a maximum. This is the well-

known Neyman-Pearson criterion of detection theory (Ref. 4).

2.2 Probability of a False Alarm

An image filtered with the aid of a high-pass filter contains

both positive and negative intensities. This implies that the thresh-

old level can either be negative, to detect targets colder than the

background; positive, to detect targets hotter than the background; or

bipolar, to detect both types of targets. Let n(t) be the number of

alarms generated by a particular spatial filter, as a function of

threshold level t, and let N be the size (total number of pixels) of

the filtered image (not necessarily the same size as the original

image, due to edge effects). Then, the probability of a false alarm,

Pf(t), is given by:

Pf(t-) n(t-) / N = Ff(t-) [2]

% for a negative threshold, by:

Pf(t+) - i - n(t+) / N 1 - Ff(t+) [3]

for a positive threshold, and by:

Pf(t-, t+) - Pf(t-) + Pf(t+) [4]

for a bipolar threshold.

+ ,'- - " /- . " . '- " ."- "" + - ,." " "... ""-""- % '," .+* \" -... .. ... .. " %'J . .. "
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In the above expressions Pf(t-) is the cumulative distribution function

(c.d.f.) of the filtered image. Note that, in the case of the bipolar

threshold, if I t-I - It+ - t then Pf(t-, t+) - Pf(t), i.e. the c.d.f

vof the absolute value of the filtered image. Given a required Pf(t)

value, the CFAR threshold can be easily determined by calculating the

percentile that divides the range of filtered gray-level values into

the appropriate proportions.

In Fig. 1, the filtered gray-level values range from -93 to +93.

However, for display purposes, the filtered image was normalized

between -10 and +10. That is, full black corresponds to filtered

intensities less than or equal to -10, whereas full white corresponds

to filtered intensities greater than or equal to +10. The filtered

image was thresholded at the 4.71 value in both cases (with and without

targets). This particular value is the 99th percentile of the filtered

image. In other words, the probability of a false alarm is 0.01. The

original image consists of 120 rows of 220 pixels, whereas there are

only 118 rows of 218 pixels in the filtered image. This is because the

Nspatial filter is restricted within the confines of the image and under

'U these conditions it is blind to the pixels sitting on the perimeter of

the original image.

%2.3 Probability of a True Alarm

We will now address the problem of determining the probability

of a true alarm, i.e. the probability of detecting a target that sud-

denly appears somewhere within the sensor's field of search. To this

end, we will make a few assumptions.

a) Firstly, we will assume that the IR sensor is operated at

its limit of resolution and that, in consequence, the target

is not larger than the field of view (IFOV) of an individual

pixel. In other words, as already mentioned, we assume that

the target of interest is a point target.

- -'.- .. •
*~~J 17 j'
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b) Secondly, we will assume that in order to establish a con-

tact with a point target, it must appear on a single pixel.

In practice, of course, a point target may at times be

sensed by more than one pixel. In fact, if there is no gap

between the individual IFOVs, the intensity of a point

target may be shared by up to four pixels, which considera-

bly reduces its detectability. This implies that we have to

*accept the fact that, with time, there might be breaks in

the detection log, even though the target is maneuvering

against a perfectly uniform background.

c) Finally, we will follow the example of Ref. 3 and assume

that the surveillance system is deliberately designed to

announce that a true alarm has occurred if, and only if, the

target coincides with the central pixel of the spatial

filter. Otherwise, the target will be regarded as absent.

The reason for this last assumption will become more obvious

as we go along.

To determine the probability of a true alarm we will have to

simulate, for lack of sufficient experimental data, the change that the

image gathered by an IR sensor undergoes due to the presence of a point

target within its field of search. Let us consider the IR cloud

picture of Fig. 2. We prefer this picture here, for illustration pur-

poses, to the one of Fig. 1 because the latter contains large, satu-

rated areas. Assume that a point target suddenly crosses the sensor's

field of search. Then as the target passes through the individual

fields of view, the intensity of the corresponding pixels fluctuates.

The amplitude of this fluctuation essentially depends on the intensity

and the size of the target. However, it is not important here to know

the exact mechanism behind this phenomenon. We will only retain that

the intensity of a particular pixel is not the same with and without a

p %

V~ %
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FIGURE 2 - The IR digital cloud picture, used to describe the proposed
method of characterization of spatial filters, and its

histogram. The horizontal axis of the graph ranges from 0
to 237, i.e. from the minimum gray-level value to the
maximum gray-level value found in the picture, whereas the

vertical axis ranges from 0 to the value of the mode of the
histogram.
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target in its IFOV and, hence, we will attempt to characterize a given

spatial filter for a broad range of intensity variations, in a variety

of scenarios.

The following four target-insertion scenarios cover many possi-

bilities:

R(x, y) - Kl [5]

R(x, y) - ML(x, y) + K2 x ML(x, y) [61

R(x, y) - I(x, y) + K3 [71

R(x, y) - I(x, y) + K4 x I(x, y) [8]

where R(x, y) is the intensity resulting from the presence of a point

target within the IFOV of the pixel at spatial coordinate (x, y); KI,

K2, K3 and K4 are constants; I(x, y) is the intensity of the back-

ground, i.e. of the pixel in the absence of a target, and MX(x, y) is

a local mean calculated over a neighborhood of the same size as the

spatial filter but excluding the central pixel. The first scenario

corresponds to a point target whose size is comparable to the IFOV,

with the result that the intensity of the target is substituted for the

intensity of the background. For performance evaluation purposes,

constant Kl can be expressed in terms of the background mean: k'Mg;

background standard deviation: k''Sg; or both, Mg + k'''Sg. It is

worthy of note that in this scenario the target can be either colder or

hotter than the immediate surroundings depending on the value of Ki and

where the target is inserted. This means that to detect it one must

use a bipolar threshold. Otherwise, the characterization results are

meaningless. The other three scenarios can be associated with a point

target smaller than the IFOV so that some of the background intensity

combines with that of the target and must be accounted for. Equation 6

can be rearranged as follows:

-. - . . "a. " . ' , . , ,
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2 - R(x, y) - M(x, y) [9]
M1(x, y)

that is, K2 can be assimilated to local contrast. In the case of [8],

the same rearrangement will show that K4 is a signal-to-noise ratio.

Constant K3, like Kl, can be expressed in terms of Mg, Sg or both. The

point targets simulated with the aid of [6], [7] or [8] are either

colder (negative K's) or hotter (positive K's) than the background, and

must be detected accordingly so as not to bias the characterization

results.

The graph in Fig. 2 is the histogram of the underlying cloud

picture and an estimate of the probability density function (p.d.f.) of

the background pixels. The horizontal axis of the graph ranges from 0

to 237, i.e. from the minimum to the maximum gray level present in the

picture, whereas the vertical axis ranges from 0 to the value of the

mode of the histogram. Both scales are linear. The very same histo-

gram is repeatedly plotted on a semilogarithmic scale in Fig. 3 as a

solid gray plot. The superimposed white curves in the same figure are

the p.d.f. of the simulated point targets. The labels A, B, C, and D

correspond to the scenarios [5], [6], [7] and [8] respectively. These

curves were obtained by first inserting, according to the related

scenario, a point target in each and every pixel of the picture of Fig.

2, and then calculating the histogram of the resulting collection of

target-in-pixel intensities. However, as far as scenarios [5] and [7]

are concerned, this procedure is not really necessary since the outcome

is obvious. In the first case, the histogram is nothing but a spike

(Fig. 3a) whose position on the horizontal axis is governed by constant

K1. In the case of [7], the target-in-pixel histogram is a true

replica of the background histogram but is shifted to the right or to

the left, according to the sign of K3, by an amount equal to the

absolute value of K3 (Fig. 3c). The other two histograms (Figs. 3b and

d), although distinct, exhibit the same general trend: they both

stretch the background histogram in one direction.

tP:' , . -. L o . ,' " , %'-. -, ' .%,
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FIGURE 3 - The repeated gray curve is the histogram of the cloud back-
ground of Fig. 2 plotted on a semilogarithmic scale, whereas

"-I the superimposed white curves are the histograms of the
-. inserted point targets corresponding to the four target-

insertion scenarios described in Section 2.3.

V
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Figure 4 shows the spreading of the background and target-in-

pixel intensities after filtering with the spatial filter defined by

[1]. In other words, Figs. 3 and 4 display the same quantities before

and after filtering. The horizontal axis of all the plots of Fig. 4

ranges from -100 to +100. We note that the histogram of the filtered

cloud picture is quite narrow, with a standard deviation of 2.27 com-

pared to a standard deviation of 45.02 for the original, unfiltered

picture. The histograms of the target-in-pixel intensities are much

broader, except for the one in Fig. 4c. Since the filter used is

linear, the target-in-pixel histogram associated with [7], as in

Fig 3c, is simply a shifted version of the background histogram. The

scenario that produces the broadest histogram is the one defined by [5]

(Fig. 4a). It stretches out from -35 to 202.5 which explains the odd

behavior of the curve at the positive end of the horizontal axis. On

the other hand, the distinct nature of scenarios [6] and [8] stands out

more clearly here (Figs. 4b and d) than in the case of Fig. 3.

As mentioned in Section 2.2, the histogram of a filtered image

provides an estimate of the p.d.f. of a false alarm. In the same way,

the histogram of the filtered target-in-pixel intensities provides an

estimate of the p.d.f. of a true alarm for a given background scene.

The probability per se of a true alarm or of a false one is obtained by

cumulating their p.d.f. backwards. The resulting curves, Fig. 5, are

never-increasing functions of the threshold level.

2.4 Filter Operating Characteristic

We can use the plots of Fig. 5 to determine the probability of

detection (probability of a true alarm) and the probability of a false

alarm associated with a particular threshold setting or, more realisti-

cally, to determine the probability of detection we can expect when we

*, have to compromise with a certain false-alarm probability. Another way

.0VvV% %'r F- (1
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FIGURE 4 - This figure is the counterpart of Fig. 3. It depicts the
histograms of the cloud background and of the inserted point
targets after filtering, whereas Fig. 3 displays the same
quantities, but before filtering.

ft
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FIGURE 5 -By cumulating backwards the histogram of the cloud back-
ground and the histograms of the inserted point targets of

- Fig. 4, one obtains the probability of a false alarm
(repeated gray curve), and the probability of detection
(white curves) as a function of the threshold level. As in
the case of Figs. 3 and 4, the letters A, B, C and D corre-
spond to the four target-insertion scenarios described in
Section 2.3.

.:--:-: : ' ____
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of presenting these quantities is to plot the probability of detection

versus the probability of a false alarm, for various target-contrast

values (Fig. 6). Van Trees (Ref. 4) refers to such plots as the

receiver operating characteristic. Here the expression filter oper-

ating characteristic is probably more appropriate. Another equivalent

representation of these quantities consists in plotting the detection

probability against target-contrast values, for a few selected false-

alarm probabilities (Fig. 7). This last rearrangement of the data is

the one we prefer for filter-characterization purposes. The false-

alarm probability values selected are 0.001, 0.01, and 0.1. Given the

size of the images considered here and the fact that we are dealing

with single frames, it would not be realistic to select a probability

* of false alarm smaller than 0.001. On the other hand, since what we

eventually want is a surveillance system having a high detection proba-

bility coupled with a low false-alarm rate, it is of no use to consider

false-alarm probability values greater than 0.1.

Figure 7 shows that for a target-contrast value of 0.09 the

detection probability is close to one, whatever the probability of a

false alarm. In the presence of a degrading factor such as noise, the

performance of a particular filter is bound to decline. To assess its

performance under such conditions one can calculate, for a given

target-contrast value, say 0.09, the corresponding detection probabili-

ty for increasing amounts of simulated noise. The resulting curves are

shown in Fig. 8. The additive, uncorrelated Gaussian noise was derived

from a pseudo-random number generator. The noise had a zero-mean value

and a standard deviation given by Nff x Sg, where Nf is the noise factor

.7
• ,,.and Sg the standard deviation of the whole image.

The plots of Figs. 7 and 8 can be reduced to a single number, a

kind of figure of merit, for easier filter characterization and com-

parison. This number is referred to as the Minimum Detectable Contrast

% """ "'
NpC
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9

', FIGURE 6 - In Fig. 5, the probability of a false alarm and the proba-
i bility of detection are each plotted against the threshold

level for a particular value of the parameter characterizing

a given target-insertion scenario. Another, more useful way
of presenting these quantities is to plot directly the

~probability of detection versus the probability of a false

values of K2: 0.01, 0.02 and 0.04.
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01 O0

FIGURE 8 - Behavior of the detection probability as more and more
uncorrelated Gaussian noise is added to the system. The
target-insertion scenario here is the same as the one used

to generate Fig. 7, with the value of K2 set at 0.09. The
noise factor is the standard deviation of the noise divided
by the standard deviation of the original image. The values
of the detection probability at zero noise factor (Fig. 8)
and at 0.09 target contrast (Fig. 7) are the same. Hence,

the plots of Figs. 7 and 8 could be joined end to end.
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in the case of Fig. 7, and as the Maximum Tolerable Noise in the case

of Fig. 8. Both are simply the target-contrast value and the noise-

factor value, corresponding to a detection probability of 50%.

2.5 Implementation

Figure 9 diagrammatically describes how the characterization

procedure expounded in the previous sections has been implemented.

This figure is largely self-explanatory. First, a moving window

extracts an image sample having the same dimensions as the filter

point-spread function (or the filter-defining equation in the case of a

nonlinear filter). A point target is then added to the center pixel

according to one of the scenarios defined In Section 2.3. Correlated

or uncorrelated Gaussian noise is added next if the intent is to evalu-

ate the performance of the filter in the presence of noise. Otherwise,

this step is merely bypassed. The last operation is the filtering

operation that simply consists (in the case of a linear filter) in

multiplying the elements of the point-spread function by the corre-

sponding elements of the modified moving window, and then in adding all

these products together to end up with a single number (here 47.75) for

each location of the moving window.

3.0 SPATIAL FILTERS EVALUATED

Some of the spatial filters proposed to detect slow or station-

ary targets are the:

a) 3 x 3-element. 4-neighbor Laplacian filter (F)

This high-pass, linear spatial filter is the discree

conterpart of the analog Laplacian operator, i.e. of a

second-order, two-dimensional derivative. Its point-spread

function is given by:

%.. ". - .. .. , . . . ' - '
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FIGURE -This figure is largely self-explanatory. It describes the~
wa~y the rharaicteri zat ton procedure was irnpioment od.
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0.00 -0.25 0.00

-0.25 +1.00 -0.25 [10]

0.00 -0.25 0.00

b) 3 x 3-element. 8-neighbor Laplacian filter (F2)

This filter is an alternative Laplacian one based on a

different neighborhood consisting of 8 horizontal, vertical,

and diagonal neighbors weighted as follows:

+0.25 -0.50 +0.25

-0.50 +1.00 -0.50 [11]

+0.25 -0.50 +0.25

c) 5 x 5-element Wiener filter (F3)-

0.0012 0.0195 0.0450 0.0196 0.0012

0.0195 -0.0304 -0.3049 -0.0304 0.0195

0.0450 -0.3049 1.0000 -0.3049 0.0450 [12]

0.0195 -0.0304 -0.3049 -0.0304 0.0195

0.0012 0.0195 0.0450 0.0195 0.0012

. d) 9 x 9-element Wiener filter (F41

0.0017 -0.0057 0.0091 -0.0314 0.0944 -0.0314 0.0091 -0.0057 0.0017

-0.0057 0.0073 -0.0188 0.0520 -0.1599 0.0520 -0.0188 0.0073 -0.0057

0.0092 -0.0188 0.0372 -0.1125 0.2954 -0.1125 0.0372 -0.0188 0.0092

-0.0314 0.0520 -0.1125 0.2810 -0.5927 0.2810 -0.1125 0.0520 -0.0314

0.0944 -0.1599 0.2954 -0.5927 1.0000 -0.5927 0.2954 -0.1599 0.0944 [131

-0.0314 0.0520 -0.1125 0.2810 -0.5927 0.2810 -0.1125 0.0520 -0.0314

0.0092 -0.0188 0.0372 -0.1125 0.2954 -0.1125 0.0372 -0.0188 0.0092

-0.0057 0.0073 -0.0188 0.0520 -0.1599 0.0520 -0.0188 0.0073 -0.0057

0.0017 -0.0057 0.0091 -0.0314 -0.0314 -0.0314 0.0091 -0.0057 0.0017

,.,.
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Filters F3 and F4 are different least-mean-square optimal

filters. The formulation of the optimal filtering problem

requires a knowledge of the target and the background

models. Here, we assume that we have to deal with a point

target embedded respectively in a benign (F3) and in a harsh

background (F4). The power spectral density of the back-

ground is assumed to be an exponential, the exponent of

which determines the harshness of the background. These

particular Wiener filters were proposed by E. Lithopoulos of

Spar Aerospace Limited.

e) 3 x 3-element submedian filter (F5)

f) 5 x 5-element submedian filter (F6)

A one-dimensional median filter is defined by an odd-length

window L - 2*1 + 1 elements long. To derive the output

sample g(i), the window is centered on the input sample x(i)

and all the samples within the window are ranked according

to their amplitude. The output, y(i), is selected to be the

(I + l)-ranked (i.e. the median) input sample.

The median operator preserves constant backgrounds, slopes

and edges. It also suppresses isolated pulses shorter than

or equal to 1 pixel. By performing a simple subtraction of

the median input, x(i), from the median output, y(i), we

derive a dual operator called the submedian. Unlike the

median filter, the L-element long, submedian filter suppres-

ses constant backgrounds, slopes and edges, and preserves

pulses which are less than or equal to 1 element long.

Ne%
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For the present two-dimensional F5 and F6 filters, we use

two different submedian operators. One is 3 elements long

(F5) and the other is 5 elements long (F6). The operator is

applied in four directions in the following sequence:

4
413

2 * 2

314

Specifically, the one-dimensional submedian operator is

first applied in the north-south (1) direction. The

resulting intermediate matrix is then processed by the sub-

median operator in the east-west (2) direction. The proce-

dure is then repeated in the southwest-northeast (3) and the

northwest-southeast (4) directions.

The performance of the two-dimensional submedian operator

depends on the window size and the separability of the

operator. Simulations indicate that the 3 x 3-element

operator performs best for point targets. However, in the

case of leakage of the target to neighboring elements,

significant target attenuation can result. For this reason,

a window 5 elements long is probably better for extracting

extended targets.

g) 5 x 5-element double-gated filter (F7)

This nonlinear filter is fully documented in classified DREV

reports where it is used to detect extended vehicle targets

in IR imagery. The particular form of this filter, proposed

to detect slow or stationary targets, can be implemented as

follows. Each point in the input image is surrounded by a

S% %
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frame one pixel thick, and 5 pixels wide. The mean, Hf, and

the standard deviation, Sf, of the intensity of the pixels

in the frame are then computed and these quantities are used

to shift and scale the intensity (A) of the center element

of the 5 x 5 window, as follows:

A' - (A - Mf) / Sf [14]

Figure 10 illustrates the working principle of a double-

gated filter.

Another filter proposed to detect slow or stationary targets

is the Sobel edge detector. This filter is to be

implemented in two stages. The first stage is the

generation of two intermediate data matrices from the

original image by using the two Sobel convolution operators,

SI and S2, defined by:

. -0.5 0.0 +5.0 -0.5 -1.0 -0.5

Sl - -1.0 0.0 +1.0 S2 - 0.0 0.0 0.0 [15]

-0.5 0.0 +5.0 0.5 +1.0 +0.5

We immediately see that such a filter cannot be evaluated by

using the procedure expounded here, for the center element

of both S1 and S2 is 0.

!
%~.~
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I I

FIGURE 10 - This figure illustrates the working principle of a double-
gated filter. The black and the white disks superimposed
on the target correspond respectively to the center of the
white and gray frames surrounding the target. The white

(black) disk and the white (gray) frame stick together and
as the disk scans the target, the frame samples the back-
ground surrounding the target. For this reason, the disk

or the inner window of a double-gated filter is referred to
as the target gate, and the frame-like window or outer
window as the background gate.
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4.0 PERFORMANCE EVALUATION RESULTS

Figures 11 to 17 display the characteristic curves of the seven

spatial filters defined in the previous chapter. The target-insertion

scenario used to generate these curves is the one defined by [7]. The

upper graphs in the aforementioned figures give the probability of

detection as a function of the intensity of the target (constant K3 of

[7]), whereas the lower graphs depict the behavior of the probability

of detection in the presence of noise. In the latter case, constant K3

was set to 11 and the noise model used was:

N(O, Nf x I(x, y)) [16]

i.e. additive Gaussian noise with a mean of 0 and a standard deviation

proportional to the intensity of the pixel at spatial coordinate (x,

y). Nf in [16] is the noise factor of Figs. 11 to 17.

From the plots of Figs. 11 to 17, one can extract the two

figures of merit defined in Section 2.4, namely the minimum detectable

target intensity (MDTI) and the maximum tolerable noise factor (MTNF).

The values of these figures of merit are gathered in Tables I and II.

TABLE I

Minimum detectable target intensity

Probability of false alarm

Filter

0.001 0.01 0.1

4-neighbor Laplacian >11.0 8.27 2.81
8-neighbor Laplacian 6.37 4.23 2.25
5 x 5 Wiener >11.0 8.43 2.82
9 x 9 Wiener >11.0 7.50 3.13
3 x 3 submedian >11.0 7.47 3.52
5 x 5 submedian >11.0 9.15 4.15
double-gated >11.0 9.66 3.70
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3 x 3, 4-NEIGHBOR LAPLACIAN

0 .75-

L
Q-

C
o .5
40 /

o .25 /..10*1

o - -_L_ _

I. 3. 5. 7. 9. .

Target Intensity

---- 0.001L0 .75

0 .5 -

----- 0.0
0~

0 .025 .05 .075
Noise Factor

FIGURE 11 The upper graph in this figure represents the probability

of detecting a point target embedded in the cloud back-

" ground of Fig. 2 by using a 3 x 3, 4-neighbor Laplacian

i. filter as a function of the intensity of the target above

!, the intensity of the background, at the target location.

The lower graph depicts the adverse effect of additive

~Gaussian noise on the probability of detecting a point

j target whose intensity is 11 units above the background.

r , The noise in question has a mean of 0 and a standard
j deviation proportional (noise factor) to the intensity of

~each pixel within the filter window. Each graph displays

• ' three curves corresponding to the indicated false-alarm

probabilities.
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3 x 3, 8-NEIGHBOR LAPLACI=AN

0 .75
L
Q-
o." / /

C

0 0

1. 3. 5. 7. 9. 11.
Target Intensity

1.

"0 7 --.. o.00

L - --- 0.01

0.1

o .5

4 25 .

01-.o lT- - -"_------.-

0 .025 .05 .075
Noise Factor

FIGURE 12 - This figure is the counterpart of Fig. 11 for the case of a
3 x 39 8-neighbor Laplacian filter. This filter is the one

that exhibits the best overall performance for the cloud

background considered here.
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IF _x 5 WIENER FILTER-

0 .75

o

L

C

1. 3. 5. 7. 9. 11.

Target Intensity

o, 05
, ', o 7 5 ' ' 'X~o

C)

o .5 \

0

- -.2-5.00

0 .025 .05 -075

Noise Factor

FIGURE 13 - This figure is the counterpart of Fig. 11 for the case of a
5 x 5 Wiener filter. The point-spread function of this
filter is similar to the one of the 3 x 3, 4-neighbor
Laplacian filter. This explains why the above plots are
nearly a replica of those of Fig. 11.
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IF 9 x 9 WIENER FILTER

0 .

L

C
o .5

4j .25Z/

0)

j. 3. 5. 7. 9. 11.
Target Intensity

-0.01

0 .75

4J)

4J ~25 --

0 .025 .05 .075
Noise Factor

FIGURE 14 - This figure is the couinterpart of Fig. 11 for the case of a

9 x 9 Wiener filter.
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3x 3 SUBMEDIAN FILTER

0 .

C
o .5

V43
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~ 25 

01

0 0

Target Intensity

0 .

L

0~

0. .255 .0 .7

Noise Factor

FIGURE 15 -This figure is the counterpart of Fig. 11 for the case of a
3 x 3 submedian filter. This filter is a nonlinear filter,
whereas the filters of Figs. 11 to 14 are linear.
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I5 x 5 SUBMEDIAN FILTER

0 .

L

C
o .5

.4J

0
i. 3. 5. 7. 9. 11.

Target Intensity

0 .7

C 
0.1

0 .5
4eJ

4J 25

00

FIGURE 16 - This figure is the counterpart of Fig. 11 for the case of a
5x5 submedian filter. As we can see by comparing the

plots of Figs. 15 and 16, a larger submedian filter does
ntnecessarily mean a better probability of detection.
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5 x 5 DOUBLE-GATED FILTER

i.

0 .75
.

C
o .5
-'-_.4 ' f _

4J 25 -

0

1. 3. 5. 7. 9. i.
Target Intensity

0 .75 -
0.1

-C 

-I+. 25 -

0 I
0 .025 .05 .075

Noise Factor

FIGURE 17 - This figure is the counterpart of Fig. 11 for the case of a

5 x 5 double-gated filter. This filter, like the submedian

4: filter, is a nonlinear filter. Although its overall
detection performance is not impressive, it performs better

than most of the other filters at low target intensities

and it is more robust in the presence of noise.
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TABLE II

Maximum tolerable noise factor

Probability of false alarm

Filter
0.001 0.01 0.1

4-neighbor Laplacian 0.0 0.013 0.047

8-neighbor Laplacian 0.013 0.017 0.040

5 x 5 Wiener 0.0 0.012 0.045

9 x 9 Wiener 0.0 0.014 0.031

3 x 3 submedian 0.0 0.015 0.044

5 x 5 submedian 0.0 0.011 0.043

double-gated 0.0 0.006 0.049

The next table (Table III) contains a few statistical parameters

pertaining to the filtered image, i.e. the mean value, Mf, the standard

" deviation, Sf, and the AC power gain, G. The latter is defined as

follows:

10 lOgl0 (Sg2  2Sf 217]

where Sg is the standard deviation of the original, unfiltered image.

,-m ',
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TABLE III

Filtered-image statistics

Mean Standard AC power

Filter deviation gain

(Mf) (Sf) (G)

4-neighbor Laplacian 0.00 5.74 17.89

8-neighbor Laplacian 0.00 2.30 25.83
5 x 5 Wiener 0.21 4.68 19.66

9 x 9 Wiener 0.01 3.24 22.86

3 x 3 submedian -0.02 3.31 22.67

5 x 5 submedian -0.04 3.88 21.29

double-gated 0.00 0.83 34.69

Finally, for the sake of comparison, the 0.01 probability-of-
false-alarm curves are all plotted on the same graph in Figs. 18 and

19. The very same type of lines is used for the two Laplacian filters

(solid line), the two Wiener filters (long dash followed by two short

dashes), and the two submedian filters (long dash followed by a dot).

The double-gated filter is represented by a dashed line.

"*.From this set of figures and tables, we see that:

a) The filter with the best overall performance for the type of

background considered here is the 3 x 3, 8-neighbor

Laplacian.

b) With the exception of the 3 x 3, 8-neighbor Laplacian

filter, the double-gated filter outperforms all the other

filters at low target intensities (Fig. 18).

c) The double-gated filter is more robust than all the other

filters, without exception, in the presence of noise

(Fig. 19).
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CLOUD BACKGROUND

Pf = 0.01)

Lopleelen

ouble-gated

75-

.0
L

o .5-

y .~2 5 -
.f-0,

0)

3. 5. 7. 9.

Target Intensity

FIGURE 18 - We have gathered in this figure the detection-performance

curves (at a probability of false alarm of 0.01) of the
. seven filters studied in this report. The same type of
- line is used for the two Laplacian filters (solid line),

~the two Wiener filters (combination of long and short
~dashes) and the two submedian filters (dash-dot line). A

dashed line is used to represent the double-gated filter.
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0 0
FIGURE 20 - This figure shows the logarithm of the power spectrum of

the four linear filters. For display purposes and to bring
out the differences between the various spectra, the values
of the logarithm between the 0.1 and the 0.9 percentage
points were mapped into a gray scale running from 0 (black)
to 255 (white), and then subjected to a modulo-64 trans-
formation (i.e. gray levels 0 to 63 were mapped into 0 to
255, as well as the gray levels in the ranges 64 to 127,
128 to 191, and 192 to 255). This last transformation
produces a display that looks like an interference

pattern.
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d) The Laplacian, Wiener and submedian filters exhibit the same

behavior in the presence of noise.

e) For the cloud background considered in this report, the

three nonlinear filters (the double-gated filter and the two

submedian filters) do not do better as a whole than the four

linear ones.

f) The curves of Figs. 11 and 13 are nearly identical. This

should come as no surprise given that the point-spread

functions of the relevant filters are quite similar despite

the difference in size. In fact, if [12] is rounded to the

first decimal digit, we obtain:

0.0 -0.3 0.0

-0.3 +1.0 -0.3

0.0 -0.3 0.0

Figure 20 further confirms the great similarity between the two

filters.

g) It seems (Figs. 15 and 16) that the performance of a sub-

median filter decreases as we increase its size.

h) If the seven filters were to be ranked from best to worst

according either to the MDTI (Table I) or the MTNF (Table

II) values for a probability of false alarm of 0.01, one

would obtain the following classification:

% a.
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1) 3 x 3, 8-neighbor Laplacian

2) 3 x 3 submedian filter

3) 9 x 9 Wiener filter

4) 3 x 3, 4-neighbor Laplacian

5) 5 x 5 Wiener filter

6) 5 x 5 submedian filter

7) 5 x 5 double-gated filter

i) However, if the same sort of ranking was attempted with the

AC power gain values of Table III, the result would be:

1) 5 x 5 double-gated filter

2) 3 x 3, 8-neighbor Laplacian

3) 9 x 9 Wiener filter

4) 3 x 3 submedian filter

5) 5 x 5 submedian filter

6) 5 x 5 Wiener filter

7) 3 x 3, 4-neighbor Laplacian

This is a clear indication that the ratio of the standard devia-

tion of the filtered image to the one of the unfiltered image is not a

general measure of the performance of a spatial filter. It is meaning-

ful only for linear filters.

5.0 CONCLUSION

The primary objective of this report was to formulate a method-

ology for evaluating both linear and nonlinear spatial filters used by

passive IR sensors to discriminate between signals due to target

sources and those arising from background clutter. As mentioned in the

introduction, the proposed methodology applies only to point targets.

A different methodology will have to be devised for spread targets, for

it does not seem possible to generalize the one expounded here in order

to include such targets.

: ' :- >> '.'.. ,-.,:., ., -.-.. .- -. .. , .:., -, - - ' :V
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A number of specific spatial filters cannot be evaluated with

the proposed methodology. These are the ones like the Sobel filter

whose center element of the point-spread function is zero. This is

because we assume that the post-filtering processing is deliberately

designed to announce that a detection has occurred if, and only if, the

target coincides with the center element of the filter. Otherwise, the

target is regarded as being absent.

The proposed methodology allows one to quantitatively and

qualitatively evaluate the performance of a particular spatial filter

for a given background. The results obtained will be useful only

insofar as this particular background is typical of those likely to be

encountered by the surveillance system or any other system built around

such a filter. In other words, the performance of a spatial filter is

bound to be different for different backgrounds.

The results presented in this report, along with those of a few

more experiments we have carried out with other types of background,

convey the impression that the 3 x 3, 8-neighbor Laplacian filter is a

very effective filter when the imagery is not too noisy, that the

double-gated filter is more robust than the other ones in the presence

of noise, and that the performance of a submedian filter decreases as

one increases its size. However, more experimentation will be needed

to confirm these findings.
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